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Abstract. Digital redesign by emulation of the continuous is a quite
frequent method for building digital controllers. However, as the sam-
pling period increases the performance is degraded. One solution is to
design the controller directly in the discrete domain, with the advantage
of having the sampling period as an extra parameter. But when there
are sampling constrains either in sensors or actuators it is necessary to
choose as sampling period the slowest one. Moreover, such a period be-
comes a lower bound. Multi-rate controllers arise due to these sampling
constrains releasing from the hypothesis of having a single period. This
is why it is interesting to consider a so widespread controller such as the
PID in multi-rate situations. In this paper a direct design method, based
on Modified Ziegler Nichols, for PID controllers is presented. The novelty
of this paper is to consider the sampling period as a degree of freedom
and, when it comes too large, to improve the performance by turning it
into a multi-rate PID. With the method proposed both gain and phase
margin requirements can be obtained.
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1 Introduction

It is remarkable that the design of controllers is still carried out in the continu-
ous domain even when these are finally built in digital devices. Just considering
PID controllers, there are about one thousand tuning rules compiled in (1], all of
them for continuous systems. Afterwards, taking a sampling period fast enough
and then applying some approximation of the derivative such as Backward dif-
ferences or Tustin, a discrete PID is obtained. However this method is no longer
right if the sampling period is above a threshold. Designing techniques directly
in the discrete domain considering the sampling period as an extra degree of free-
dom have been proposed [2],[3] . Besides sampling constrains either on sensors or
actuators can prevent from using a single sampling rate or even from choosing it
within a given range, let alone small enough to emulate the continuous. A system
under this constrains is said to be Multi-rate (MR). There are two possible con-
trol strategies: Multi-Rate Input Controller (MRIC) in which the manipulated
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variable is updated faster than the measured variable, and Multi-Rate Output
Controller (MROC) which is the complementary case. Chemical processes (4],
polymer reactors [5] or sector servo of hard disk drives [6] are MRIC examples
where the control action could be updated N, times for each measure of the
output. On the other hand, artificial vision systems are a MROC example in
which the large amount of incoming data is faster than the algorithm working
on it.

Multi-rate PID (MRPID) controllers have been built for both strategies with
different techniques [7]-[12]. All prove very good performance but the controller
obtained is not expressed in term of the classical gains Kp, K1 and Kp. Using
Kranc operators technique [13] the authors presented a model for a MRIC PID
controller that preserves the gains [14] but has the drawback of dealing with
MIMO systems.

This work considers the general case for MRPID in which the measured vari-
able is updated every T seconds and the manipulated variable every 7%, seconds.
As a consequence both MRIC and MROC strategies are covered. The contribu-
tion of this paper is to present the advantages of such a MRPID for obtaining a
range of useful phase margins and a given gain margin, bringing it face to face
with the conventional single-rate PID (SRPID) in two different scenarios: first
taking the sampling period as a parameter design; and then assuming there is
a lower bound for the sampling period which is the slowest one found in the
control system. The disadvantages remarked above are coped so that finally a
simple tuning method in the frequency domain is obtained. The rest of the pa-
per is organised as follows. Section II presents the MRPID controller and its
modelling. Section III is devoted to the tuning method in the frequency domain.
Section IV shows an study case and finally the conclusions are given.

Notation

G(s): Continuous transfer function

G(z),GT*(2): Discrete transfer function (from an algorithm
with period T )

G(2): Kranc Operator of G

l.e.m.(a,b,c,...): Least common multiple of a, b, c, ...
RT ET,UT,YT: Discrete transfer function of vectorised signals sampled
at metaperiod T'.

N, : Error rate N, : Control rate

Np : Proportional rate Nj : Integral rate

Np : Derivative rate T : Metaperiod

w: . Lem (Ney Np, Ny, Np) n: l.cm.(Ny,Np,Ni,Np)

2 Model

Let us consider a parallel digital PID controller in which the backward differences
approximation of the derivative, s = (z —1)/zT, is used. Let us assume that the
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error is measured with period T, and the control action is updated with period
T,. Hence, there are two intuitive approaches to the way the controller internally
works. The simplest one is to compute the control action value in terms of the
last error sample and send it out with period T, until a new error sample is
received. By doing so a SRPID working at the larger period is finally obtained.
A more elaborate and natural decision is to consider the error as a sequence
of steps and the control action as the sum of every basic control component
(i.e. proportional, integral and derivative) response to such steps. Still a more
general case can be considered with this approach if the proportional, integral
and derivative components work at periods Tprp, Tin: and Tge, respectively. This
scheme is depicted in Fig. 1(a), where the superscript gives extra information
about the sampling time to the Z-transform.

Any given basic action will seldom take place at the same instant than any
other one or even the final control action or the error sampling. Therefore, fol-
lowing the second approach, the simplest solution to this problem is to hold the
error sample for T, seconds so that it is always available for every component.
Every basic action is also hold during its own period making feasible to add
the three of them at any time. This output is finally sampled every T seconds.
Kranc operators methodology [13] has been used throughout this paper. Kranc
operators transform a MR system into a Single Rate MIMO system working
at metaperiod T, defined as the l.c.m. of all the periods found in the system.
The two basic ideas behind Kranc operators are the vector switch decomposition
(VSD) [15] and the approximation of continuous signals by fictitious samplers
at high rates [16]. Thus a sampler element with period T//N is modelled by an
expand operator [N*] which vectorises the input signal in N channels so that
every channel is advanced with respect to the next one T/N seconds; then all
the channels are sampled at metaperiod T so that in T seconds N samples of the
signal are taken and finally the signal is reconstructed with a reduce operator
[N~] as defined in [13]. So, first of all, the periods appearing in Fig. 1(a) must be
rewritten in terms of the metaperiod T: T, = T/N,, Tu = T/Ny, Tprp=T/Np,
Tint=T/Np, T4er=T/Np. Due to space limitations and since of the paper is fo-
cused on the tuning method in the frequency domain we encourage to find an
exhaustive description of the model in [17]

R(z) E(z U@@) Y(2)
—>Qe4 Gez) (A 6o (A
- Ne Nu Ny

XNy,Ne //

Ne Ny

Fig. 1. MRPID scheme (a) and block diagram using Kranc Operators (b).
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When the MRPID controller is inserted in a control loop, the process and
the feedback must be also modelled using Kranc operators [13]. The control
loop is finally represented by the block diagram shown in Fig. 1(b) Here Gc(z)
is the model of the MRPID controller obtained above and Gp(z) is the Kranc
operator of the continuous process Gp(s) preceded by a ZOH with period T'/N,.
The continuous output of the process is approximated with a fictitious sampler
that measures NV, times in a metaperiod. Since just N, out of these N, samples
must be fed back, the block Xy, ne is necessary. The figure also represents the
vectorisation by a crossing line that indicates the number of channels it has in.

3 Tuning Method
The open loop transfer matrix of the MR system shown in Fig. 1 is given by:
M (z) = XNy,Ne - GP(2)Ge(2), (1)

Thus M (z) is a square transfer matrix with N, rows and columns and therefore
the Nyquist curve must be generalised to the characteristic loci [18], which is the
eigenvalue set of M (e’“T) for 0 < w < w/T. In order to generalise the Modified
ZN method to the MR case, first note that

XG(z) = Xny,ne - Gp(2) = [9:5(2)], (2)

with 1 < i < Ne and 1 < j < Nu, is the open loop transfer matrix without
the controller. Let us consider that a MR Proportional controller Cp(z) with
Kp =1and Np =1 is connected. Such a controller is represented by a transfer
matrix in which every element is equal to zero but the first column is equal to
one. Then the element in the position (i,j) of Mp(2) = Z(_Q(Z)_Q}_’(Z) is given
by:

Nu o
ik s i Q
0 if1<j<Ne

m.,‘j =

The eigenvalue set of the matrix Mp(e?*7T) is

Nu
M2,..Ne =D g1,q(“T) = GpT (7) (4)

g=1

with multiplicity N,. This means that inserting a Proportional controller with
Kp = Np =1, for any N, and N,, into the control loop and selecting a frequency
wp we determine a point A = GpT (e7“°T), which belongs to the Nyquist curve of
the process preceded by a ZOH with period T'. Moreover, since the Nyquist curve
in this case is equal to the characteristic loci, the point A is actually /Ne coincident
points A = Ap; = ... = Apy, where the subscript P indicates they were obtained
just with a proportional controller. These A p; are complex numbers which have a
well-known correspondence in R2, so from now on complex points will be referred
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to as elements (or points) of R2. Increasing the proportional internal rate Np
splits point A so that in the most general case A # Ap; # ... # Apn,. Then,
modifying Kp moves every Ap; over the line that goes through the origin and
Ap; so that |Ap;| is a function of Kp. Let Ci(z) be a MR Integral controller with
N; =1 and K; = 0, which is now connected instead of Cp(z) in (1). Following
the same reasoning as above, point A is now split, by means of the controller, for
the frequency wy, into N, points Ay; # ... # A;n, # A; and again for each Ap;
its module |Ay;| is a function of K. The same can be said for a MR Derivative
controller Cp(z) with Np =1 and Kp = 0 so that in the end each |Ap;| is a
function of Kp.

We are now in a position of considering the complete MRPID Ge(z) =
Cp(z) + Ci(2) + Cp(z), for any set of internal rates and gains. Once it is con-
nected into the open loop, (1) becomes

M(2) = Xny,Ne - Gp(2) (Cp(2) + C;(2) + Cp(2)) (5)
The eigenvalue set of (5) for z = e/“°T is therefore given by
{Bi = Api + A1 + Ap;}, withi = 1, ..., Ne (6)

Consequently once the internal rates Np, N; and Np as well as the frequency
wo have been fixed, the eigenvalue set of (5) depends only on Kp, Ky and Kp.
In this paper we propose to choose gains Kp, K; and Kp to assure a closed
loop gain margin of v dB, which means that the characteristic loci has satisfy
two conditions: it must cut the negative x-axis in B = —10~7/2° and nowhere
else to the left. This is the task the next two subsections are devoted to.

3.1 Computing the Proportional, Integral and Derivative main
directions

Since N, points B; are obtained with (6) it is necessary to select just one. Let
By = Ap; + A1 + Ap; be the eigenvalue that will match the required point B,
then we define the unitary vectors

Api An Ap
N TR B 7
Ap ' JAn| P |Ap1| @

and the proportional, integral and derivative main directions as the directions
established by Vp, V| and Vp respectively. It is clear that points Ap1, An
and Ap; must be properly chosen out of their respective sets {Ap;}, {Ari} and
{Ap:} for satisfying the conditions of the given gain margin. As a first approach
we recommend to choose Ap; as

‘ ingine) -wee (125
Api; = minabs | angle ( ——; Ne | — angle [ —1 8)

7T ( g (IAPi| E\Iapl :
where the first term is the angle of the unitary vector established by Ap; using
the actual controller (i.e. with the given N, > 1) and the second term is the
angle of the unitary vector established by the unique Ap if N, was 1. A similar
criterion should be used for Ay; and Ap;.

Vp
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3.2 Computing Kp, Ky and Kp

Now it is possible to generalise Modified ZN method to the MR situation shown
in Fig. 1 with the following procedure:

1. Connect a MRPID controller with Np = Ny = Np = Kp =1 and K; =
Kp =0.

2. Select a frequency wo € [0,wo/T). This frequency determines a point A =
GpT (e7“T) in the Nyquist plot of the process preceded by a ZOH with
period T .

3. Make Np, N; and Np equal to the greater of N, and N,.

4. Obtain {Ap;}, the eigenvalue set of the open loop transfer matrix consid-
ering only proportional action with Kp = 1. Similarly, obtain {A7;} and
{Ap;} considering only integral (K; = 1) and derivative action (Kp = 1)
respectively.

5. Select {Ap1}, {An} and {Ap1} according to (8) and obtain Vp, Vi and
Vp with (7).

6. Select a gain margin of v dB. This gain margin determines a point B =
—10—7/20,

7. Point B can be rewritten as B = ppVp+p1Vi+ppVp, where pp, pr and pp
depend on Kp, K1 and Kp respectively. Although the relation between K
and p is hard (or impossible) to determine, an iterative and simple Newton
algorithm rapidly converges on a solution. The main steps are:

— Consider only proportional action and give an initial value to Kp.

— Obtain {Ap;} for that Kp and select Ap; as the one in the direction of
Vp.

~ If |Ap1| = pp then Kp is the solution. Otherwise repeat the process with
another value of Kp.

— Repeat the steps for integral and derivative actions, obtaining K and
Kp.

It is important to remark the following issues:

1. Unlike for the continuous controller, Vp, Vi and Vp are generally not or-
thogonal.

2. The choice of Vp, V] and Vp according to criterion (8) is not always right
so, once the controller has been tuned, it is necessary to verify that point B
is actually in the characteristic loci. If not then other main directions must
be chosen.

3. The gain margin must be also checked out, for the method only assures one
value of the characteristic loci which is point B.

3.3 Derivative action effect on both gain and phase margins

When using MRPI or MRPD controllers there is a unique couple (pp,pr) or
(pp, pp) but for MRPID infinite combinations of pp, pr and pp are possible so
an extra constrain is needed for fixing a unique combination (pp, p1, pp). When
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N, = 1, it has been proposed to try different Kp (i.e. pp) for it has the effect
of modifying the phase margin keeping the gain margin [14]. The same can be
applied now for N, > 1. This paper gets deeper in the study of when both gain
and phase margins requirements can be satisfied. So far a frequency wy must
be previously fixed so that point A is moved to position B to satisfy the gain
margin requirement; but another frequency could also accomplish the same goal,
perhaps with a wider or more appropriate phase margin range. Thus, if wg is a
degree of freedom the following algorithm is proposed:

1. Carry out the procedure of computing Kp, K; and K p selecting the ultimate
frequency as the initial value for wy and fixing Kp = 0. Consequently the
proportional gain gets its maximum value Kpppqz.

2. Fix Kp = 0.95K prqaz and compute K; and Kp again.

3. Repeat step 2 reducing another 5% each time until Kp = 0 or the gain
margin is not satisfied because of the characteristic loci has been excessively
bent. Thus a phase margin range has been obtained for the same gain margin.

4. Set another frequency wp, smaller than the previous one since it was the
upper bound and repeat steps 1, 2 and 3. Thus a new phase margin range
is obtained, probably intersecting with others so eventually a gain margin
range for a given phase margin is also obtained

4 Example

Let us consider the continuous process given by the transfer function Gp(s) =
25(s + 1)71(s? + s+ 25)~! and a the following robustness requirements: a gain
margin of v = 26 dB and a phase margin ¢ = 55°. Two controllers were
tested under three error sampling periods: T, = {50 ms, 125 ms, 250 ms}; the
first one was a conventional discrete PID (SRPID) that updates the control ac-
tion at Ty, = Te, and the second one a MRPID decreasing T}, to 40% of Ty; i.e.
Ty = {20 ms, 50 ms, 100 ms}. Notice that both cases can be modelled by Kranc
Operators technique, taking a metaperiod T = {100 ms, 250 ms, 500 ms}, with
Ne =N, = Np = N; = Np = 2 for the SRPID and Ne = 2; N, = Np = N; =
Np = 5 for the MRPID. Let Gp” (2) denote the discrete model of the process
with a given period T.

As a first approach, the frequency wy = 4.4 rad/s was taken. We choice such
a wp because it is associated to a point A in the Nyquist plot of GpT (z). Then
both SRPID and MRPID were tuned for different K p, always satisfying the gain
margin requirement. The results are depicted in Fig. 2(a), where the greater and
lower phase margin obtained with the MRPID (x) and with the SRPID (-) are
shown. Thus an upper and lower bound for phase margins are obtained. It can
also be seen that just for 7. = 20 ms the MRPID is able to fulfil the robustness
while the MRPID allows to have 20 ms < T, < 100 ms.

In a second approach all the points in the third quadrant, instead of a single
point A, belonging to the Nyquist plot of GpT(z) were scanned. Again both
SRPID and MRPID where tuned with several Kp, always satisfying the gain
margin requirement. The results have been depicted in Fig. 2(b), where the



70 A. Cuesta, L. Grau and I. Lopez

symbols x and - have the same meaning as above. Again an upper and lower
bound is found for both controllers. Thus, any point within the solid lines means
a phase margin that is reachable for a certain error period T'e using the MRPID
controller. The same can be said for the SRPID and the dotted lines. Notice that
the figure proves that the requirements can be satisfy but does not include the
information about neither K p nor wgo. However since Fig. 2 was obtained with
an iterative method such information can be saved and retrieved whenever.

Degrees of freedom: K, and point A (within 3" quadrant)
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Fig. 2. Phase margin range when point A is fixed (a) and when is free within the 37¢
quadrant (b)

This example shows how MRPID controllers can improve the performance of
a system in which there are severe sampling constrains in the sensors while the
actuators can work much faster. For instance, from Fig. 2(b) it can be seen that
if T, = 125 ms and Ty, = 50 ms then it is impossible to satisfy both gain and
phase margin requirements using a conventional SRPID but it is using a MRPID
instead. Thus, tuning the both SRPID and MRPID to obtain the phase margin
closest to 55° satisfying the gain margin we obtain the characteristic loci, the
step response and control action depicted in Fig. 3.

5 Conclusions

This paper introduces an indirect tuning method for the derivative gain for
the more general multi-rate situation. It is indirect because decisions are taken
over Kp in terms of robustness requirements and Kp is recomputed in terms
of Kp. This is why MRPID controllers are an interesting control strategy, not
only for coping with sampling constrains either in the error or in the control
action, but also for taking advantage of the sampling period considering it as an
extra parameter since SRPID can be considered as a particular case. Due to it
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Fig. 8. Characteristic loci (a), step response, load rejection and control action (b) with
both MRPID and SRPID. The sampling constrains are T, = 125 ms and T}, = 50 ms
and 55° are required. The SRPID is not able to satisfy it.

is necessary to solve an eigenvalue equation it not possible to give an analytical
solution and even for those cases in which it is, the computational solution is
more straightforward.
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